Unit 3 - 1 Vectors	
A vector may be considered as a set of instructions for moving from one point to another. A line which has both magnitude and direction can represent this vector.	A C
The vector \boldsymbol{u} can be represented in magnitude and direction by the directed line segment \overrightarrow{AB} . The length of \overrightarrow{AB} is proportional to the magnitude of u and the arrow shows the direction of \boldsymbol{u} .	AB and CD both represent the same vector <i>u</i> A vector does not have a position – only magnitude and direction, so many different directed line segments may represent this vector. We say <u>directed line segment</u> because AB indicates movement <u>from</u> A <u>to</u> B whereas BA would indicate movement <u>from</u> B <u>to</u> A
Components of a Vector in 2 dimensions: To get from A to B you would move: 2 units in the x direction (x-component) 4 units in the y direction (y-component) The components of the vector are these moves in the form of a column vector. thus $\overrightarrow{AB} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ or $u = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$	$\overrightarrow{D}_{x} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} \text{ or } \mathbf{v} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} \text{ or } \mathbf{v} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$
Magnitude of a Vector in 2 dimensions: We write the magnitude of \boldsymbol{u} as $ \boldsymbol{u} $ $\boldsymbol{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ then $ \boldsymbol{u} = \sqrt{x^2 + y^2}$ The magnitude of a vector is the length of the directed line segment which represents it. Use Pythagoras' Theorem to calculate the length of the vector.	The magnitude of vector \boldsymbol{u} is $ \boldsymbol{u} $ (the length of PQ) The length of PQ is written as $\left \overrightarrow{PQ}\right $ $\overrightarrow{PQ} = \begin{pmatrix} 8\\4 \end{pmatrix}$ then $\left \overrightarrow{PQ}\right ^2 = 8^2 + 4^2$ and so $\left \overrightarrow{PQ}\right = \sqrt{8^2 + 4^2} = \sqrt{80} = 8.9$
Examples: 1. Draw a directed line segment representing $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ 2. $\overrightarrow{PQ} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and P is (2, 1), find co-ordinates of Q 3. P is (1, 3) and Q is (4, 1) find \overrightarrow{PQ}	Solutions: 1. 3 2. $Q \text{ is } (2+4, 1+3) \rightarrow Q(6, 4)$ 3. $\overrightarrow{PQ} = \begin{pmatrix} 4-1\\ 1-3 \end{pmatrix} = \begin{pmatrix} 3\\ -2 \end{pmatrix}$
Vector: A quantity which has magnitude and direction. Scalar: A quantity which has magnitude only.	Examples: Displacement, force, velocity, acceleration. Examples: Temperature, work, width, height, length, time of day.

Unit 3 - 1VectorsVectors in 3 dimensional vectors can be represented on a set of 3 axes at right angles to each other (orthogonal), as shown in the diagram.
Note that the z-aix is the vertical axis.
To get from A to B you would move:
4 units in the z-direction, (x-component)
2 units in the z-direction, (x-component)
3 and in the z-direction, (x-component)
2 units in the z-direction, (x-component)
2 units in the z-direction, (x-component)
3 and in the z-direction, (x-component)
2 units in the z-direction, (x-component)
3 and intensions.
AB =
$$\begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$$
The general:
AB = $\begin{pmatrix} x_n - x_n \\ y_n - y_n \end{pmatrix}^2 + (z_n - z_n)^2$
This is the length of the vector.
Use Pythagonas' Theorem in 3 dimensions.
AB = $\begin{pmatrix} x_n - x_n \\ y_n - y_n \end{pmatrix}^2 + (z_n - z_n)^2$
and if $u = \overline{AB} = \begin{pmatrix} x_n - x_n \\ y_n - y_n \end{pmatrix}^2 + (z_n - z_n)^2$, then
 $z_n - \overline{AB} = \begin{pmatrix} x_n - x_n \\ y_n - y_n \end{pmatrix}^2 + (z_n - z_n)^2$.
Since $x = x_n - x_n$ and $y = y_n - y_n$ and $z = z_n - z_n$ Image: Table in (I II = length of AB
This is known as the
Distance formula for 3 dimensions
Recall that since: $\overline{AB} = \begin{pmatrix} x_n - x_n \\ y_n - y_n \end{pmatrix}^2$, then
 $\begin{bmatrix} x_n - x_n \\ y_n - y_n \end{bmatrix}^2 + \begin{bmatrix} x_n - x_n \\ y_n - y_n \end{bmatrix}^2 + \begin{bmatrix} x_n - x_n \\ y_n - y_n \end{bmatrix}^2 + \begin{bmatrix} x_n - x_n \\ y_n - y_n \end{bmatrix}^2$

Unit 3 - 1	Vectors	
The components of i.e. a vector has on So if two vectors ar components are equ	f a vector are unique . Iy one set of components re equal, then their ual.	e.g. if $\begin{pmatrix} 2x \\ y+3 \\ z-1 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ 2 \end{pmatrix}$ then $x = 3$, $y = 5$ and $z = 3$
Addition and s	ubtraction of vectors	Λ.
Vectors are added '	nose to tail'	$a \rightarrow b \qquad a+b$
This is known as th	e Triangle Rule.	a
To calculate $a + b$	we add the components	$\boldsymbol{a} = \begin{pmatrix} 3\\2\\5 \end{pmatrix} \boldsymbol{b} = \begin{pmatrix} 6\\1\\0 \end{pmatrix} \boldsymbol{a} + \boldsymbol{b} = \begin{pmatrix} 3+6\\2+1\\5+0 \end{pmatrix} = \begin{pmatrix} 9\\3\\5 \end{pmatrix}$
To calculate $a - b$	we subtract the components	$\boldsymbol{a} = \begin{pmatrix} 3\\2\\5 \end{pmatrix} \boldsymbol{b} = \begin{pmatrix} 6\\1\\0 \end{pmatrix} \boldsymbol{a} - \boldsymbol{b} = \begin{pmatrix} 3-6\\2-1\\5-0 \end{pmatrix} = \begin{pmatrix} -3\\1\\5 \end{pmatrix}$
The Zero Vector is	$\mathbf{S} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	(3) (-3)
To obtain the negat its components by -	tive of a vector – multiply all -1	$p = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$ then $-p = \begin{pmatrix} 2 \\ -7 \end{pmatrix}$
Multiplying by	a scalar	
A vector can be mu (scalar).	ltiplied by a number	3a
e.g. multiply a Vector 3 a ha but is in the s	by 3 - written 3 <i>a</i> as three times the length same direction as <i>a</i>	a
In component form multiplied by 3.	, each component will be	$\boldsymbol{a} = \begin{pmatrix} 2\\1\\-3 \end{pmatrix}$ then $3\boldsymbol{a} = \begin{pmatrix} 6\\3\\-9 \end{pmatrix}$
We can also take a vector in componer	common factor out of a nt form.	$\boldsymbol{\nu} = \begin{pmatrix} 12\\16\\-4 \end{pmatrix} \qquad \Rightarrow \qquad \boldsymbol{\nu} = 4 \begin{pmatrix} 3\\4\\-1 \end{pmatrix}$
Scalar Multiples		$\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} -6 \end{pmatrix}$ $\begin{pmatrix} 2 \end{pmatrix}$
If a vector is a scala then the two vector in magnitude.	ar multiple of another vector, s are parallel, and differ only	$u = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ -9 \end{bmatrix}$ then $v = -3 \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ v is a scalar multiple of u and so v is parallel to u .
This is a useful test	to see if lines are parallel.	$\boldsymbol{p} = \begin{pmatrix} 8 \\ -4 \\ -12 \end{pmatrix} \text{ and } \boldsymbol{q} = \begin{pmatrix} -6 \\ 3 \\ 9 \end{pmatrix} \text{ then } \boldsymbol{p} = 4 \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix} \text{ and } \boldsymbol{q} = -3 \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$
		p and q are scalar multiples of another vector and so again are parallel

Unit 3 - 1 Vectors	
Points, Ratios and Lines Find the ratio in which a point divides a line.	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 8-2\\ 3-(-3)\\ 1-1 \end{pmatrix} = \begin{pmatrix} 6\\ 6\\ 0 \end{pmatrix}$
Example: The points A(2, -3, 4), B(8, 3, 1) and C(12, 7, -1) form a straight line.	C (12, 7, -1) B (8, 3, 1) B (8, 3, 1) B (8, 3, 1) C (12, 7, -1) B (12-8) (1
Find the ratio in which B divides AC. Solution: B divides AC in ratio of 3 : 2	\overrightarrow{A} (2, -3, 4) $\overrightarrow{AB} = 3 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{BC} = 2 \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ So, $\frac{\overrightarrow{AB}}{BC} = \frac{3}{2}$ or $AB : BC = 3 : 2$
Points dividing lines in given ratios.	³ B (16, 15, 11) $\frac{\overrightarrow{AP}}{\overrightarrow{PB}} = \frac{4}{3}$ so $3\overrightarrow{AP} = 4\overrightarrow{PB}$
Example: P divides AB in the ratio 4:3. If A is $(2, 1, -3)$ and B is $(16, 15, 11)$, find the co-ordinates of P.	$\therefore 3(p-a) = 4(b-p)$ $3p - 3a = 4b - 4p$ $7p = 4b + 3a$ $p = \frac{1}{7}(4b+3a)$
Solution: P is P(10, 9, 5)	$\boldsymbol{p} = \frac{1}{7} \left(4 \begin{pmatrix} 16\\15\\11 \end{pmatrix} + 3 \begin{pmatrix} 2\\1\\-3 \end{pmatrix} \right) = \frac{1}{7} \left(\begin{pmatrix} 64\\60\\44 \end{pmatrix} + \begin{pmatrix} 6\\2\\-9 \end{pmatrix} \right) = \frac{1}{7} \begin{pmatrix} 70\\63\\35 \end{pmatrix} = \begin{pmatrix} 10\\9\\5 \end{pmatrix}$
Points dividing lines in given ratios externally.Example:Q divides MN externally in the ratio of 3:2.M is $(-3, -2, -1)$ and N is $(0, -5, 2)$.Find the co-ordinates of Q.Solution: Q is $Q(6, -11, 8)$	Note that QN is shown as -2 because the two line segments are MQ and QN, and QN is in the opposite direction to MQ. $\frac{\overline{MQ}}{QN} = \frac{3}{-2} so -2\overline{MQ} = 3\overline{QN}$ $\therefore -2(q-m) = 3(n-q)$ $-2q + 2m = 3n - 3q$ $q = 3n - 2m$ $M (-3, -2, -1)$ $q = 3 \begin{pmatrix} 0 \\ -5 \\ 2 \end{pmatrix} - 2 \begin{pmatrix} -3 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -15 \\ 6 \end{pmatrix} - \begin{pmatrix} -6 \\ -4 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ -11 \\ 8 \end{pmatrix}$
Example: If P divides AB in the ratio m : n, show that p , the position vector of P is given by: $p = \frac{mb + na}{m + n}$	$\overrightarrow{AP} = \overrightarrow{m} so n\overrightarrow{AP} = m\overrightarrow{PB}$ $\overrightarrow{A} \qquad \qquad$

Unit 3 - 1 Vectors	
Unit Vectors	
Definition:	(a)
A unit vector has a magnitude of 1	If $\overrightarrow{AB} = \begin{pmatrix} b \\ c \end{pmatrix}$ then $a^2 + b^2 + c^2 = 1$
Unit Vectors <i>i</i> , <i>j</i> , <i>k</i>	z 🔺
The unit vectors in the directions of the axes,	
OX, OY and OZ are denoted by:	(0, 0, 1) ^y
$\boldsymbol{i} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \boldsymbol{j} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \boldsymbol{k} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$	k = j (0, 1, 0) O (1, 0, 0)
Every vector can be expressed in terms of the unit vectors i , j , k .	
The position vector \boldsymbol{p} of the point P (a, b, c) is	
$\boldsymbol{p} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	
$= \mathbf{a} \mathbf{i} + \mathbf{b} \mathbf{j} + \mathbf{c} \mathbf{k}$	
where a, b and c are the components of the vector $oldsymbol{p}$	
Basic Operations:	
If $a = 2i + 2i$ k and $b = 2i + 2k$	
11 u = 5t + 2j - k and v = 2t - 3j + 5k	
I hen	
1. Calculate $a + b$	Add the components: $a + b = 5i - 3j + 2k$
2. Calculate $\boldsymbol{a} - \boldsymbol{b}$	Subtract the components: $\mathbf{a} - \mathbf{b} = \mathbf{i} + i \mathbf{j} - 4\mathbf{k}$
3. Calculate $ \mathbf{a} $	$ a = \sqrt{3^2 + 2^2 + (-1)^2} = \sqrt{9 + 4 + 1} = \sqrt{14}$
4. Calculate $ \boldsymbol{a} + \boldsymbol{b} $	From (1): $a + b = 5t - 3f + 2k$ So $ a + b = \gamma(5^2 + (-3)^2 + 2^2) = \gamma(25 + 9 + 4) = \sqrt{38}$
	(3) (2) (6) (6) (12)
5. Express $2a + 3b$ in component form	$2 a + 3 b = 2 \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix} + \begin{pmatrix} 0 \\ -15 \\ 9 \end{pmatrix} = \begin{pmatrix} 12 \\ -11 \\ 7 \end{pmatrix}$
6. Express $p = \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix}$ in unit vector form	p = 4i - 5k (Note that there is no <i>j</i> component)
7. $a\mathbf{i} + b\mathbf{j} + \frac{1}{2}\mathbf{k}$ is a unit vector. Find the relation between a and b	$a^{2} + b^{2} + (\frac{1}{2})^{2} = 1$ $\therefore a^{2} + b^{2} + \frac{1}{4} = 1$ $\therefore a^{2} + b^{2} = \frac{3}{4}$

Unit 3 - 1 Vectors	
Scalar Product of two vectors The scalar product results from multiplying two vectors together. For two vectors a and b The scalar product is written as $a.b$ and defined as: $a.b = a b \cos\theta$ neither a nor b being zero. where θ is the angle between the vectors. Note: θ is the angle between the vectors pointing OUT from the vertex a.b is a real number, the sign of which is determined by the size of angle θ .	A practical explanation of this comes from physics. Work done = Force x displacement = $ \mathbf{F} \mathbf{x} \cos \theta$ Force and displacement are vectors (both have magnitude and direction). The result, the work done is a scalar quantity. a a θ b b b b b b b b
Component form of <i>a.b</i> An alternative form for the scalar product can be derived using components. $a \cdot b = x_1x_2 + y_1y_2 + z_1z_2$	Where $\boldsymbol{a} = x_1 \boldsymbol{i} + y_1 \boldsymbol{j} + z_1 \boldsymbol{k}$ $\boldsymbol{a} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$ and $\boldsymbol{b} = x_2 \boldsymbol{i} + y_2 \boldsymbol{j} + z_2 \boldsymbol{k}$ $\boldsymbol{b} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$
Perpendicular Vectors $a.b = 0$ If the scalar product $a.b = 0$ then if neither a nor b are zero, $\cos \theta$ must be zero, so $\theta = 90^{\circ}$ The vectors a and b are perpendicular	$a \xrightarrow{\theta = 90^{\circ}}{b}$
Examples:	Solutions:
1. Calculate <i>a</i> • <i>b</i> for $ a = 2$, $ b = 5$, $\theta = \pi/6$	$a \cdot b = a b \cos \theta$ $a \cdot b = 2 \times 5 \times \pi/6 = 10\pi/6 = 5\pi/3$
2. Calculate $\boldsymbol{a} \cdot \boldsymbol{b}$ for $\boldsymbol{a} = \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$	$a \cdot b = x_1 x_2 + y_1 y_2 + z_1 z_2 = 2 \times 1 + (-1) \times 0 + (-3) \times (-2) = 8$
3. Calculate $p \cdot q$ for $p = \begin{pmatrix} 4 \\ -3 \\ 2 \end{pmatrix}$ and $q = \begin{pmatrix} -1 \\ 4 \\ 8 \end{pmatrix}$	$p \cdot q = x_1 x_2 + y_1 y_2 + z_1 z_2 = 4 \ge (-1) + (-3) \ge 4 + 2 \ge 8 = 0$
What can you deduce about p and q ?	Since neither p nor q are zero, then p and q are perpendicular.

Unit 3 - 1	Vectors	
Angle between	two vectors	
The angle θ betwee	een two vectors is:	This is derived from the two definitions of scalar product:
$\cos\theta = \frac{a.b}{ a b }$		$a \cdot b = a b \cos\theta$
Assuming that neit	her \boldsymbol{a} nor \boldsymbol{b} are zero.	$a \cdot b = x_1 x_2 + y_1 y_2 + z_1 z_2$
Note: $a \cdot b = 0 \notin a$ i.e. a is perpendisure assuming a	$\Rightarrow \theta = 90^{\circ} \text{ or } \pi/2$ indicular to b $a \neq 0, \ b \neq 0$	hence $\cos \theta = \frac{\boldsymbol{a}.\boldsymbol{b}}{ \boldsymbol{a} \boldsymbol{b} } = \frac{x_1x_2 + y_1y_2 + z_1z_2}{ \boldsymbol{a} \boldsymbol{b} }$
Remember:		
θ is the angle betwee point OUT from the vectors carefully.	een the vectors when they e vertex. Choose your	
Example: 1. Calculate the size	ze of the angle between the	Using: $\cos \theta = \frac{p.q}{ p q }$ $p \cdot q = 6 - 3 + 10 = 13$
vectors: $p = $	$\begin{vmatrix} 3 \\ -1 \end{vmatrix}$ and $q = \begin{vmatrix} 2 \\ 3 \end{vmatrix}$	$ \mathbf{p} = \sqrt{(3^2 + (-1)^2 + 5^2)} = \sqrt{35}$ $ \mathbf{q} = \sqrt{(2^2 + 3^2 + 2^2)} = \sqrt{17}$
	5) (2)	So $\cos \theta = \frac{13}{\sqrt{35}\sqrt{17}} = 0.5329 \theta = \cos^{-1}(0.5329)$
		Hence $\theta = 57.8^{\circ}$ (1 d.p.)
Example: 2. Calculate the size	ze of the angle between vectors:	Using: $\cos \theta = \frac{u.v}{ u v }$ $u.v = 2-9+5 = -2$
$u = i + 3j - \kappa$	and $v = 2l - 3j - 5k$	$ \boldsymbol{u} = \sqrt{(1^2 + 3^2 + (-1)^2)} = \sqrt{11}$ $ \boldsymbol{v} = \sqrt{(2^2 + (-3)^2 + (-5)^2)} = \sqrt{38}$
		So $\cos \theta = \frac{-2}{\sqrt{11}\sqrt{38}} = -0.0978 \theta = \cos^{-1}(-0.0978)$
		Hence $\theta_{acute} = 84.4^{\circ}$ (1 d.p.) So $\theta = 180 - 84.4^{\circ} = 95.6^{\circ}$
		Note: $\boldsymbol{a} \cdot \boldsymbol{b} < 0 \implies \theta$ is obtuse $(2^{nd} \text{ quadrant}) - \text{because } \cos \theta < 0$
Example:		Remember – the angle is between vectors pointing OUT of the vertex.
3. Calculate the size	ze of angle ABC:	We need the scalar product of \overrightarrow{BA} and \overrightarrow{BC}
<i>z</i> A (-2, 0, 5) <i>y</i> B (1, 6, -8) C (7, 9, 4)	$\overrightarrow{BA} = \boldsymbol{a} \cdot \boldsymbol{b} = \begin{pmatrix} -2-1\\ 0-6\\ 5-(-8) \end{pmatrix} = \begin{pmatrix} -3\\ -6\\ 13 \end{pmatrix} \qquad \overrightarrow{BC} = \boldsymbol{c} \cdot \boldsymbol{b} = \begin{pmatrix} 7-1\\ 9-6\\ 4-(-8) \end{pmatrix} = \begin{pmatrix} 6\\ 3\\ 12 \end{pmatrix}$	
	$\overrightarrow{BA}.\overrightarrow{BC} = \begin{pmatrix} -3\\ -6\\ 13 \end{pmatrix} \begin{pmatrix} 6\\ 3\\ 12 \end{pmatrix} = -18 - 18 + 156 = 120 \qquad \qquad \begin{vmatrix} \overrightarrow{BA} \\ \overrightarrow{BC} \end{vmatrix} = \sqrt{9 + 36 + 169} = \sqrt{214} \\ \overrightarrow{BC} = \sqrt{36 + 9 + 144} = \sqrt{189}$	
	x	$\cos \theta = \frac{\overrightarrow{BA}.\overrightarrow{BC}}{\left \overrightarrow{BA}\right \left \overrightarrow{BC}\right } = \frac{120}{\sqrt{214}\sqrt{189}} = 0.5967 \text{ So } \theta = 53.4^{\circ}$ Hence $\angle ABC = 53.4^{\circ}$

Unit 3 - 1 Vectors				
Some Results of the Scalar Product	Using: $ \boldsymbol{a} \boldsymbol{b} \cos \theta$			
$a.a = a^2$	$a.a = a a \cos 0^\circ = a a x 1 = a^2$ where $ a = a$			
i.i = j.j = k.k = 1 or $i^2 = j^2 = k^2 = 1$ i.j = i.k = j.k = 0	$i.i = i i \cos 0^\circ = i i x 1 = 1 x 1 x 1 = 1$ where $ i = 1$ Obtain equivalent result for $j.j$ and $k.k$ $i.j = i j \cos 90^\circ = i j x 0 = 1 x 1 x 0 = 0$ where $ i = 1, j = 1$ Obtain equivalent result for $j.k$ and $i.k$			
Distributive Law				
$a \cdot (b+c) = a \cdot b + a \cdot c$ Example: Parallel vectors b and c are inclined at 60° to vector a . $ a = 3$, $ b = 2$, $ c = 4$. Evaluate $a \cdot (a+b+c)$	$b = 2$ $\frac{4}{60^{\circ}} + \frac{4}{60^{\circ}}$ $a \cdot (a + b + c) = a \cdot a + a \cdot b + a \cdot c$			
	$= 3^{2} + 3 \times 2 \times \cos 60^{\circ} + 3 \times 4 \times \cos 60^{\circ} \text{ (since } \boldsymbol{a} \boldsymbol{a} = a^{2} = 3 \times 3 \text{)}$ $= 9 + 6 \times \frac{1}{2} + 12 \times \frac{1}{2}$ $= 18$			
Example:				
The vectors \boldsymbol{a} , \boldsymbol{b} and \boldsymbol{c} are defined as:				
a = 3i + j + 4k $b = -2i + j - k$	Solution:			
c = -i + 4j + 2k	$a.b = 3 \times (-2) + 1 \times 1 + 4 \times (-1) = -6 + 1 - 4 = -9$			
a) Evaluate $a.b + a.c$	$a.c = 3 \times (-1) + 1 \times 4 + 4 \times 2 = -3 + 4 + 8 = 9$			
b) Make a deduction about the vector $\boldsymbol{b} + \boldsymbol{c}$	a.b + a.c = -9 + 9 = 0 But $a.b + a.c = a.(b + c)So a.(b + c) = 0 hence b + c is perpendicular to a$			
Example:	Solutions:			
Evaluate:				
1. <i>i.(i + j)</i>	1. $i.(i + j) = i.i + i.j = 1 + 0 = 1$			
2. $j.(i + k)$	2. $j.(i + k) = j.i + j.k = 0 + 0 = 0$			
3. $i^2 + j^2 + k^2$	3. $i^2 + j^2 + k^2 = 1 + 1 + 1 = 3$			
4. $i.(i + j + k)$	4. $i.(i + j + k) = i.i + i.j + i.k = 1 + 0 + 0 = 1$			

Unit 3 - 2	Further Differentiation and Integration		
Derivative of s $\frac{d}{dx}(\sin x)$ $\frac{d}{dx}(\cos x)$	in x and cos x = $\cos x$ = $-\sin x$	If we consider the graph of $y = \sin x$ and then sketch below it, the graph of the derived function, we can deduce that the graph of the derived function is $y = \cos x$. Similarly we can deduce that the graph of the derived function from $y = \cos x$ is $y = -\sin x$ $y = \cos x$ is $y = -\sin x$ $y = \sin x \Rightarrow d/dx (\sin x) = \cos x$ $y = \cos x \Rightarrow d/dx (\cos x) = -\sin x$	
		We can of course prove this using the limit formula.	
The same rules of algebraic functions $y = 3\sin x$ $y = 2\cos x + \sin y$ $y = x^2 - 4\sin x$	differentiation apply as to s: $dy/dx = 3\cos x$ $x dy/dx = -2\sin x + \cos x$ $dy/dx = 2x - 4\cos x$	multiplying by a constant y = f(x) + g(x)	
Straight line form			
The same rule app are involved – get Example: $y = \frac{x^3 + x}{x}$	lies as before when fractions into straight line form $\frac{2^{2} \sin x}{2}$	$y = \frac{x^3}{x^2} + \frac{x^2 \sin x}{x^2} = x + \sin x$ $\frac{dy}{dx} = 1 + \cos x$	
Examples:		Examples:	
1. $y = 2\sin x$		1. $dy/dx = 2\cos x$	
2. $y = 1 - \sin x$		$2. \qquad dy/dx = -\cos x$	
3. $y = 1 + \cos x$	x	3. $dy/dx = -\sin x$	
4. $y = \frac{1}{2} \cos x$		4. $y = -\frac{1}{2} \sin x$	
5. $y = \sin x - c$	os x	5. $dy/dx = \cos x + \sin x$	
6. $y = 3\sin x +$	2cos x	$6. \qquad dy/dx = 3\cos x - 2\sin x$	
7. $y = x + \cos x$	x	7. $dy/dx = 1 - \cos x$	
8. $y = \sqrt{x - \cos \theta}$	x	8. $y = x^{\frac{1}{2}} - \cos x$ $dy/dx = \frac{1}{2} x^{-\frac{1}{2}} + \sin x$	
9. $y = x^2 + 2x$	- 3sin x	9. $dy/dx = 2x + 2 - 3\cos x$	
10. $y = \frac{1-x\cos x}{x}$	<u>s x</u>	10. $y = \frac{1}{x} - \frac{x \cos x}{x} = x^{-1} - \cos x$ $\frac{dy}{dx} = -x^{-2} + \sin x$	

Further Differentiation and Integration

Chain Rule – Algebraic functions

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

The Chain Rule applies to composite functions

or 'Functions of a function'

These will always be of the form $(....)^n$

so:
$$\frac{d}{dx}(\dots)^n = n(\dots)^{n-1}\frac{d}{dx}(\dots)$$

It is important to be clear in your mind as to what the different functions are.

In function notation:

If
$$y = f(g(x))$$
, a composite function,
then $y = f(u)$ and $u = g(x)$
and $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $\frac{d}{dx}(f(g(x))=f'(u)\times \frac{d}{dx}(g(x))=f'(g(x))\frac{d}{dx}(g(x)))$
that is $\frac{d}{dx}f(\dots)=f'(\dots)\frac{d}{dx}(\dots)$
Note (.....) is the same function in each case
- the contents of the bracket.

This is just another way of stating the rule above.

Examples:

1. $y = (x - 1)^4$ 2. $y = (5x + 1)^2$ 3. $y = (4 - u^2)^3$

- 4. $y = (t^3 5)^{-3}$
- $5. \qquad y = \frac{1}{2x+3}$
- 6. $y = (x^2 + 2x)^{-1}$
- 7. $y = \sqrt{(t-2)(t+1)}$

Example of composite function:

$$y = (3x + 1)^3$$

$$f(x) = x^3$$
 $g(x) = 3x + 1$ $f(g(x)) = f(3x+1) = (3x + 1)^3$

Using different variables for each function we can write this as:

$$y = u^3 \qquad u = 3x + 1$$

so
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} \implies \frac{dy}{du} = 3u^2 \quad \frac{du}{dx} = 3$$

 $\frac{dy}{dx} = 3u^2 \times 3 = 3(3x+1)^2 \times 3 = 9(3x+1)^2$

With practice, we do not need to go over all these steps – it will become intuitive what you have to do.

Practical Application

Differentiate the bracket – with respect to the bracket then multiply by the derivative of the bracket with respect to x.

$$\frac{d}{d(...)} \times \frac{d(...)}{dx}$$
 d by d (bracket) times d (bracket) by dx

In the above example:

$$y = (3x + 1)^3$$

dy/dx = $3(3x + 1)^2 \times 3 = 9(3x + 1)^2$

This will become clear and obvious with practice.

Solutions:

1.
$$dy/dx = 4(x - 1)^3 \times 1 = 4(x - 1)^3$$

2. $dy/dx = 2(5x + 1)^1 \times 5 = 10(5x + 1)$
3. $dy/du = 3(4 - u^2)^2 \times (-2u) = -6(4 - u^2)^2$
4. $dy/dt = -3(t^3 - 5)^{-4} \times 3t^2 = -9t^2(t^3 - 5)^{-4}$
5. $y = (2x + 3)^{-1} \quad dy/dx = -1(2x + 3)^{-2} = -(2x + 3)^{-2}$
6. $dy/dx = -1(x^2 + 2x)^{-2} \times (2x + 2) = -(2x + 2)(x^2 + 2x)^{-2}$
7. $y = (t^2 - t - 2)^{\frac{1}{2}} \quad dy/dt = \frac{1}{2}(t^2 - t - 2)^{-\frac{1}{2}} \times (2t - 1)$
 $dy/dt = \frac{1}{2}(2t - 1)(t^2 - t - 2)^{-\frac{1}{2}}$

Unit 3 - 2Further Differentiation and Integration				
Chain Rule – T	Frigonometric functions			
The Chain Rule als These will appear i	so applies to trigonometric functions. In two forms:	As with algebraic functions, it is important to be clear in your mind what the two functions are.		
1. $y = \sin()$) or $y = \cos()$	Wi	th practice it become	es intuitive as to what you do.
2. $y = (\dots \sin x)$	$(x)^{n}$ or $y = (, \cos x)^{n}$	Exa	ample:	
These are dealt was algebraic functions	with in exactly the same way as for a.	1.	$y = \sin 2x$	This is $\sin(\ldots)$ where $(\ldots) = 2x$ So, $dy/dx = \cos 2x \times 2$
1. $y = \sin(\ldots)$	$\frac{dy}{dx} = \cos(\dots) \frac{d}{dx}(\dots)$			$dy/dx = 2 \cos 2x$
y = cos ()	$\frac{dy}{dx} = -\sin(\dots) \frac{d}{dx}(\dots)$	2.	$y = (1 + \cos x)^3$	This is $(\cos x)^3$ where $() = 1 + \cos x$ So, $dy/dx = 3()^2 \times (-\sin x)$
2. $y = (\dots \sin x)$	$\int_{0}^{n} \frac{dy}{dx} = n(\dots \sin x)^{n-1} \frac{d}{dx}(\dots \sin x)$			$dy/dx = -3\sin x (1 + \cos x)^2$
	dv d	3.	$y = \sin^3 x$	This is $y = (\sin x)^3$
$y = (\ldots \cos x)$	$\int^{n} \frac{dy}{dx} = n(\cos x)^{n-1} \frac{d}{dx}(\cos x)$			$dy/dx = 3(\sin x)^2 \times \cos x$
				$dy/dx = 3 \cos x \sin^2 x$
There will only be do is identify them	two functions at most, all you have to , and use the above rules.			
Examples:		So	lutions:	
1. $y = \cos 5x$		1.	$dy/dx = -5 \sin 5x$	
2. $y = \sin(2x - x)$	- 3)	2.	$dy/dx = \cos(2x - $	$3) \times 2 = 2\cos(2x - 3)$
3. $y = \cos(x^2 - x^2)$	- 1)	3.	$dy/dx = -\sin(x^2 - x^2)$	1) $\times 2x = -2x \sin(x^2 - 1)$
4. $y = \sqrt{(\sin x)}$	Hint: write as $y = (\sin x)^{1/2}$	4.	$dy/dx = \frac{1}{2} (\sin x)^{-1}$	$\frac{1}{2} \times \cos x = \frac{1}{2} \cos \times (\sin x)^{-\frac{1}{2}}$
5. $y = \cos^2 x$	Hint: write as $y = (\cos x)^2$	5.	$dy/dx = 2 (\cos x)^1$	$(-\sin x) = -2\sin x \cos x = -\sin 2x$
$6. y = \frac{1}{\sin t}$	Hint: write as $y = (\sin t)^{-1}$	6.	$dy/dx = -1(\sin t)^{-2}$	$f \times \cos t = -\cos t (\sin t)^{-2}$
7. $y = \frac{3}{4cost}$	Hint: write as $\frac{3}{4}(\cos t)^{-1}$	7.	$dy/dx = \frac{3}{4} (-1)(\cos \theta)$	$(\sin t)^{-2} \times (-\sin t) = \frac{3}{4} \sin t (\cos t)^{-2}$
8. $y = \sin 2x + $	cos 3x	8.	$dy/dx = 2\cos 2x - $	3 sin 3x
9. $y = \sqrt{1 + co}$	s x) Hint: write as $y = (1 + \cos x)^{\frac{1}{2}}$	9	$dy/dx = \frac{1}{2}(1 + \cos \theta)$	$x)^{-\frac{1}{2}} \times (-\sin x) = -\frac{1}{2}\sin x (1 + \cos x)^{-\frac{1}{2}}$
10. $y = \frac{1}{x} - \frac{1}{\sqrt{s}}$	$\frac{1}{\sin x}$ Hint: write as $y = x^{-1} - (\sin x)^{-1/2}$	10.	$dy/dx = -x^{-2} - (-\frac{1}{2})$	$(\sin x)^{-3/2}(\cos x) = -\frac{1}{2} x^{-2} \cos x (\sin x)^{-3/2}$
11. $y = 2 \sin x c$	os x Hint: write as $y = \sin 2x$	11.	$dy/dx = 2\cos 2x$	
7. $y = \frac{3}{4\cos t}$ 8. $y = \sin 2x + \frac{3}{4\cos t}$ 9. $y = \sqrt{1 + \cos t}$ 10. $y = \frac{1}{x} - \frac{1}{\sqrt{x}}$ 11. $y = 2\sin x \cos t$	Hint: write as $\sqrt[3]{4} (\cos t)^{-1}$ $\cos 3x$ s x) Hint: write as $y = (1 + \cos x)^{\frac{1}{2}}$ $\frac{1}{\sin x}$ Hint: write as $y = x^{-1} - (\sin x)^{-\frac{1}{2}}$ $\cos x$ Hint: write as $y = \sin 2x$	7. 8. 9 10. 11.	$dy/dx = \frac{3}{4} (-1)(\cos x)$ $dy/dx = 2 \cos 2x - \frac{1}{2} (1 + \cos x)$ $dy/dx = \frac{1}{2}(1 + \cos x)$ $dy/dx = -x^{-2} - (-\frac{1}{2})$ $dy/dx = 2 \cos 2x$	$s t)^{-2} \times (-\sin t) = \frac{3}{4} \sin t (\cos t)^{-2}$ $3 \sin 3x$ $x)^{-\frac{1}{2}} \times (-\sin x) = -\frac{1}{2} \sin x (1 + \cos x)^{-\frac{1}{2}}$ $)(\sin x)^{-\frac{3}{2}}(\cos x) = -\frac{1}{2} x^{-2} \cos x (\sin x)^{-\frac{3}{2}}$

Unit 3 - 2 **Further Differentiation and Integration Integration – Standard Integrals - 1** We will be able to integrate functions that we recognise as the result of a Chain Rule differentiation. **Consider:** $\int (ax+b)^n \, dx = \frac{(ax+b)^{n+1}}{(n+1)a} + c$ $\frac{d}{dx}(ax+b)^{n+1} = (n+1)(ax+b)^n a$ So working backwards: Rather than remember the formula, it is better to understand how it is derived. $\int (ax+b)^n dx$ must have come from $(ax+b)^{n+1}$ In principle -1. Recognise the function as a Chain Rule derivative. but, upon differentiation we would get the multipliers 2. Work out what it must have come from. *n* + 1 from the *index* and *a* from the *bracket derivative*. Put in any necessary multipliers/divisors 3. Check the result by differentiation. 4 So we need to have these two multipliers in the **denominator** of the integrated function, Sounds complicated, but again, with a little practice, it in order to cancel out upon differentiation. becomes second nature. **Examples**: Solutions: (Check by differentiation) Integrate these functions: (Don't forget the constant) In each case consider what function it came from: $(x + 1)^4$ 1. $(x+1)^5 \times (1/5) = 1/5 (x+1)^5 + c$ 1. $(3x-2)^2$ 2. 2. $(3x-2)^3 \times (1/3) \times (1/3) = 1/9 (3x-2)^3 + c$ $(x-5)^{-2}$ 3. 3. $(x-5)^{-1} \times (-1) = -(x-5)^{-1} + c$ $(5-2x)^{-3}$ 4. 4. $(5-2x)^{-2} \times (-\frac{1}{2}) \times (-\frac{1}{2}) = \frac{1}{4} (5-2x)^{-2} + c$ $(2x+1)^{\frac{1}{2}}$ 5. 5. $(2x+1)^{3/2} \times \frac{2}{3} \times \frac{1}{2} = \frac{2}{6} (2x+1)^{3/2} = \frac{1}{3} (2x+1)^{3/2} + c$ $(1-4x)^{-3/2}$ 6. 6. $(1-4x)^{-1/2} \times (-2) \times (-\frac{1}{4}) = \frac{1}{2} (1-4x)^{-1/2} + c$ $\sqrt{(v+4)}$ 7. Straight line form is: $(v + 4)^{\frac{1}{2}}$ 7. $(v+4)^{3/2} \times {}^{2}/{}_{3} = {}^{2}/{}_{3}(v+4)^{3/2} + c$ $\frac{3}{\left(2t+3\right)^4}$ Straight line form is: $3(2t + 3)^{-4}$ 8. $3(2t+3)^{-3} \times (-\frac{1}{3}) \times \frac{1}{2} = -\frac{1}{2}(2t+3)^{-3} + c$ 8. $\frac{1}{\sqrt{(2x+3)}}$ 9. $(2x+3)^{\frac{1}{2}} \times 2 \times \frac{1}{2} = (2x+3)^{\frac{1}{2}} + c$ 9. Straight line form is $(2x + 3)^{-\frac{1}{2}}$ $\frac{2}{\sqrt[3]{(1-t)}}$ Straight line form is $2(1-t)^{-1/3}$ 10. $2(1-t)^{2/3} \times \frac{3}{2} \times (-1) = -3(1-t)^{2/3} + c$ 10.

Further Differentiation and Integration

Integration – Standard Integrals - 2

Integration of trigonometric functions, is just the reverse of differentiation:

$$\int \cos x \, dx = \sin x + c$$

and

$$\int \sin x \, dx = -\cos x + c$$

We can also integrate trigonometric functions that we recognise as the result of a Chain Rule differentiation.

$$\int \cos(ax+b) \, dx = \frac{1}{a} \sin(ax+b) + c$$

and

$$\sin(ax+b) \ dx = -\frac{1}{a}\cos(ax+b) + c$$

Rather than remember the formula, again, it is better to understand how it is derived.

In principle -

- Recognise the function as a Chain Rule derivative. 1.
- Work out what it must have come from. 2.
- Put in any necessary multipliers/divisors 3.
- 4. Check the result by differentiation.

Examples:

Integrate these functions: (Don't forget the constant)

3cos x 1.

2. 5sin x

3. sin 4x

4. $5 \cos 2x$

5. $3 \sin \frac{1}{2} x$

6. $\cos(x+2)$

7. sin(3x + 4)

8. $\sin 2x + \cos 3x$

9. $t^2 + 2\cos 2t$ Since:

$$\frac{d}{dx}(\sin x) = \cos x$$

and

 $\frac{d}{dx}(\cos x) = -\sin x$

Again, by considering what it must have come from:

$$\frac{d}{dx}\sin(ax+b) = a\cos(ax+b)$$

and

$$\frac{d}{dx}\cos(ax+b) = -a\sin(ax+b)$$

So we need to have the multiplier in the **denominator** of the integrated function, in order to cancel out upon differentiation.

Sounds complicated, but again, with a little practice, it becomes second nature.

Solutions: (Check by differentiation)

In each case consider what function it came from:

 $-\cos 4x \times (\frac{1}{4}) = -\frac{1}{4}\cos 4x + c$

 $-3\cos \frac{1}{2}x \times 2 = -6\cos \frac{1}{2}x + c$

 $-\cos(3x+4) \times \frac{1}{3} = -\frac{1}{3}\cos(3x+4) + c$

 $-\cos 2x \times \frac{1}{2} + \sin 3x \times \frac{1}{3} = -\frac{1}{2}\cos 2x + \frac{1}{3}\sin 3x + c$

 $5 \sin 2x \times \frac{1}{2} = \frac{5}{2} \sin 2x + c$

 $\frac{1}{3}t^{3} + 2\sin 2t \times \frac{1}{2} = \frac{1}{3}t^{3} + \sin 2t + c$

1.

2.

3.

4.

5.

6.

7.

8.

9.

 $3\sin x + c$

 $-5\cos x + c$

sin(x+2) + c

Uı	Unit 3 - 3 The Exponential and Logarithmic Functions			
Gr Th	rowth Function is is of the form: A($k(n) = ka^n$	Examples of growth functions: Bank Account – compound interest £200 at 7% for 6 years. Amount after 6 years $A = 200 \times 1.07^{6}$	
with $a > 1$		with $a > 1$ $A = ka^n$	Population growth Now 47,000 growth 3% per year. Population after 9 years $A = 47\ 000 \times 1.03^9$ Appreciation House cost £55 000 when purchased. It appreciates at 4% for 25 years. Value after 25 years $A = 55\ 000 \times 1.04^{25}$	
De	cay Function		Examples of decay functions:	
Th	is is of the form: $A($ w $.$ A_{k} 0	$k(n) = ka^{n}$ with a < 1 $A = ka^{n}$	Evaporation Initially 10 litres – evaporates at 5% per hour (NB loses 5% means 95% remains) After 15 hours amount left is: $A = 10 \times 0.95^{15}$ Population decline Was 20,000 declines 3% per year. (NB declines 3% means 97% remains) Population after 20 years $A = 20\ 000 \times 0.97^{20}$ Depreciation Car cost £23 000 depreciates 20% each year. (NB loses 20% means worth 80%) Value after 3 years $A = 23\ 000 \times 0.8^3$	
E x 1.	amples: An open can is f fluid, which evap week. Construct fluid (in millilitr Calculate how m weeks.	illed with 2 litres of cleaning porates at the rate of 30% per a function for the amount of es) left after <i>t</i> weeks. such fluid remains after 6	Solutions: 1. 30% evaporation, means that 70% remains After 1 week $A = 2000 \times 0.7$ mls remain After t weeks $A(t) = 2000 \times 0.7^{t}$ mls remain. After 6 weeks $A(6) = 2000 \times 0.7^{6}$ mls = 235.3 mls remain	
2.	A population of per hour. Constr number of cells a Calculate how m after 12 hours	100 cells increases by 60% uct a function to show the after after <i>h</i> hours.	2. After one hour number of cells $N = 100 \times 1.6$ After h hours number of cells $N(h) = 100 \times 1.6^{h}$ After 12 hours number of cells $N(12) = 100 \times 1.6^{12} = 28,147$ cells	
3.	Radium has a ha means that a give steadily and be h Check that, start decay function for R(t) =	If life of 1600 years. This en mass of radium will decay halved in 1600 years. ing with 5g of radium, the or the mass after t years is = $5(0.5)^{t/1600}$	3. If $R(t) = 5(0.5)^{t/1600}$ then put t = 1600 (half life) which gives $R(t) = 5 \times 0.5^1 = 2.5$ g which is correct. After 400 years $R(400) = 5(0.5)^{400/1600} = 5(0.5)^{0.25} = 4.2$ g	
4.	Calculate the ma Construct a deca which has a half for the initial am	ss remaining after 400 years. y function for Carbon-14 -life of 5720 years. Using C_0 ount of carbon-14 present.	4. $C(t) = C_0 (0.5)^{t/5720}$	

Unit 3 - 3 The Exponential and	l Logarithmic Functions	
The exponential function An exponential function is of the form a^x where a is a constant. If $a > 0$, the function is increasing (growth) If $a < 0$, the function is decreasing (decay) a may take any positive value depends on situation function is modelling. A special exponential function ~ e^x e^x e^x e is a special constant – a never ending decimal like π .	Note: In general an exponential function will take the form: $A(x) = ab^{x}$ where both <i>a</i> and <i>b</i> are constants. <i>a</i> will represent an initial value <i>b</i> will represent the multiplier <i>x</i> will represent the variable The number <i>e</i> crops up on many occasions in the natural world. It is: $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n}$	
e = 2.718 282 828	You can find this by pressing the e^{x} key on your calculator followed by '1 =' This effectively is evaluating e^{1} .	
Linking the exponential and logarithmic functions. $y = a^{x} \iff \log_{a} y = x$ $1 = a^{0} \iff \log_{a} 1 = 0$	Use this relationship to switch between log and exponential forms. Use these two relationships to simplify and evaluate logarithmic and	
$a = a^1 \iff \log_a a = 1$	exponential functions and expressions.	
Examples: 1. Write in log form: $81 = 3^4$ 2. Write in log form: $y^4 = 20$ 3. Write in log form: $1/9 = 3^{-2}$ 4. Write in log form: $2^{1/2} = 10$ 5. Write in exp. form: $\log_2 4 = 2$ 6. Write in exp. form: $\log_2 4 = 2$ 7. Write in exp. form: $\log_9 3 = 1/2$ 8. Write in exp. form: $\log_8 4 = 2^{-1/3}$ 9. Write in exp. form: $\log_8 4 = 2^{-1/3}$ 9. Write in exp. form: $\log_8 4 = 2^{-1/3}$ 9. Write in exp. form: $\log_8 4 = 2^{-1/3}$ 10. Solve: $\log_x 9 = 2$ 11. Solve: $\log_x 9 = 2$ 11. Solve: $\log_4 x = 0.5$ 12. Solve: $\log_3 81 = x$ 13. Solve: $\log_x 7 = 1$ 14. Solve: $\log_x x = 0.5$	Solutions: 1. $\log_3 81 = 4$ 2. $\log_y 20 = 4$ 3. $\log_3 \frac{1}{9} = -2$ 4. $\log_z 10 = \frac{1}{2}$ 5. $2^2 = 4$ 6. $10^2 = 100$ 7. $9^{\frac{1}{2}} = 3$ 8. $8^{\frac{2}{3}} = 4$ i.e. $(\sqrt[3]{8})^2 = 4$ 9. $a^b = c$ 10. $x^2 = 9$ so $x = 3$ 11. $4^{0.5} = x$ so $4^{\frac{1}{2}} = x$ $\sqrt{4} = x$ $x = 2$ 12. $3^x = 81$ so $x = 4$ 13. $x^1 = 7$ $x = 7$	
14. Solve: $\log_{10} x = 0.5$	14. $10^{0.5} = x$ Use calculator $10 y^{x} 0.5 = 3.162 x = 3.16 (2 d.p)$	

Unit 3 - 3	nit 3 - 3 The Exponential and Logarithmic Functions		
Rules of Logarit	hms	These are derived from the corresponding Rules of Indices	
$\log_a xy =$	$\log_a x + \log_a y$	a^m	$\times a^n = a^{m+n}$
$\log_a \frac{x}{y} =$	$\log_a x - \log_a y$	a^m -	$\div a^n = a^{m-n}$
$\log_a x$	$p^p = p \log_a x$	(a^m)	$\Big)^{p} = a^{mp}$
		Proo	fs:
		Let	$\log_a x = m$ $\log_a y = n$ then $a^m = x$ and $a^n = y$
when working wi	th logs, always be on the	1.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
this will enable yo	powers of the base, ou to simplify expressions	2.	$\begin{array}{l} x/y \ = \ a^m \div a^n \ = \ a^{m-n} \text{so} xy = a^{m-n} \Rightarrow \log_a x/y = m-n \\ \log_a x/y = m-n \Rightarrow \log_a x/y = \log_a x - \log_a y \end{array}$
		3.	$x^{p} = (a^{m})^{p} = a^{mp}$ so $x^{p} = a^{mp} \Rightarrow \log_{a} x^{p} = mp$ $\log_{a} x^{p} = mp \Rightarrow \log_{a} x^{p} = p \log_{a} x$
Examples:		Solutions:	
Simplify – assume	same base		
1. $\log 7 + \log 2$		1.	$\log 7 \times 2 = \log 14$
2. $\log 12 - \log 2$		2.	$\log 12 \div 2 = \log 6$
3. $\log 6 + \log 2 -$	log 3	3.	$\log\left(6 \ge 2 \div 3\right) = \log 4$
4. $\log 2 + 2 \log 3$		4.	$\log 2 + \log 3^2 = \log 2 \times 3^2 = \log 18$
5. $2 \log 3 + 3 \log 3$	2	5.	$\log 3^2 + \log 2^3 = \log 9 + \log 8 = \log 9 \times 8 = \log 72$
Simplify and evalu	ate		
6. $\log_8 2 + \log_8 4$		6.	$\log_8 2 \times 4 = \log_8 8 = 1$
7. $\log_5 100 - \log_5$	4	7.	$\log_5 (100 \div 4) = \log_5 25 = \log_5 5^2 = 2 \log_5 5 = 2$
8. $\log_4 18 - \log_4 9$)	8.	$\log_4 (18 \div 9) = \log_4 2 = \log_4 4^{1/2} = 1/2$
9. $2 \log_{10} 5 + 2 \log_{10} 5$	og ₁₀ 2	9.	$\log_{10} 5^2 + \log_{10} 2^2 = \log_{10} (25 \times 4) = \log_{10} 100 = \log_{10} 10^2 = 2$
10. $3 \log_3 3 + \frac{1}{2} \log_3 3$	g ₃ 9	10.	$\log_3 27 + \log_3 9^{\frac{1}{2}} = \log_3 27 \times 3 = \log_3 81 = \log_3 3^4 = 4$
11. $5 \log_8 2 + \log_8$	$4 - \log_8 16$	11.	$\log_8 32 + \log_8 4 - \log_8 16 = \log_8 (32 \times 4 \div 16) = \log_8 8 = 1$
12. $\log_2(\frac{1}{2}) - \log_2(\frac{1}{2})$	¹ / ₂ (¹ / ₄)	12.	$\log_2 2^{-1} - \log_2 (1/2^2) = \log_2 2^{-1} - \log_2 2^{-2} = -1 - (-2) = 1$
Solve for x:			
13. $\log_a x + \log_a 2$	$= \log_a 10$	13.	$\log_2 2x = \log_2 10$ $\therefore 2x = 10$ $\therefore x = 5$
14. $\log_a x - \log_a 5$	$= \log_a 20$	14.	$\log_{a} (x/5) = \log_{a} 20$ $\therefore x/5 = 20$ $\therefore x = 100$
15. $\log_a x + 3\log_a 3$	$B = \log_a 9$	15.	$\log_{a} x + 3\log_{a} 3 = \log_{a} 9$: $\log_{a} x + \log_{a} 27 = \log_{a} 9$
			$\log_{a} 27x = \log_{a} 9 \therefore 27x = 9 \therefore x = \frac{1}{3}$

Unit 3 - 3 The Exponential and	Logarithmic Functions
Calculator keys log - means log ₁₀ (common log) ln - means log _e (natural log) y ^x - means raise to the power of e ^x - means e raised to the power of 10 ^x - means 10 raised to the power of You will need to use the above keys, when solving exponential or logarithmic equations.	Evaluate: $\log_{10} 2 \Rightarrow$ $\log 2$ = 0.3010 $\log_e 5 \Rightarrow$ $\ln 5$ = 1.6094 $5^{0.2} \Rightarrow$ 5 y^x 0.2 = $5^{0.2} \Rightarrow$ 5 y^x 0.2 = $e^{1.7} \Rightarrow$ $2^{nd} Fn \ln e^x 1.7$ = 5.4739 $10^{0.3010} \Rightarrow$ $2^{nd} Fn \log 10^x 0.3010$ = 1.99986 or \Rightarrow 10 $y^x 0.3010$ = 1.99986
Solving exponential equations.	
Solving equations of the type:	
1. $5^x = 4$	
Take \log_{10} of both sides.	Changes to log form: $\log_{10} 5^x = \log_{10} 4$
	$x \log_{10} 5 = \log_{10} 4$
	$x = \log_{10} 4 \div \log_{10} 5 = 0.8613 \dots$
2. $20 = e^{t}$ Take log _e of both sides. (Always choose log _e when dealing with growth or decay functions with <i>e</i> as the base because log _e e, makes calculation simpler) In both the above cases other constants many be involved.	Changes to log form: $\log_e 20 = \log_e e^t$ $\log_e 20 = t \log_e e$ (but $\log_e e = 1$) $t = \log_e 20 = 2.9957$
Examples:	Solutions:
1. Solve: $8 \times 0.6^{x} = 16$	1. $0.6^{x} = 2$ $\log_{10} 0.6^{x} = \log_{10} 2$ $x \log_{10} 0.6 = \log_{10} 2$
	$x = \log_{10} 2 \div \log_{10} 0.6 \qquad x = -1.36$
2. $D(t) = 500 (0.65)^{t}$	2. $2 = 500 (0.65)^{t}$ $0.004 = 0.65^{t}$ $\log_{10} 0.004 = \log_{10} 0.65^{t}$
For what value of t does $D(t) = 2$	$log_{10} 0.004 = t log_{10} 0.65 t = log_{10} 0.004 \div log_{10} 0.65$ $t = 12.8$
3. Solve: $e^{3t} = 120$	3. $\log_e e^{3t} = \log_e 120$ 3t $\log_e e = \log_e 120$ 3t $= \log_e 120$ t = $(\log_e 120) \div 3$ (careful here) t = 1.596
4. $S(t) = 225 e^{-0.36t}$ For what value of t is $S(t) = 70$	4. $70 = 225 e^{-0.36t}$ $70 \div 225 = e^{-0.36t}$ $0.3111 = e^{-0.36t}$ log _e $0.3111 = \log_e e^{-0.36t}$ log _e $0.3111 = -0.36t$ log _e e
	$\log_e 0.3111 = -0.36t$ $t = \log_e 0.3111 \div (-0.36)$ $t = 3.243$

Unit 3 - 3	The Exponential and Logarithmic Functions
Experiment and Theory In experimental work, data can often be more by equations of the form: $y = ax^n$ (polynomial) or $y = ab^x$ (exponential) both are similar.	helled $y \uparrow y = 3x^2$ $y \uparrow y = 2e^x$ $y \downarrow y = 2e^x$ $y \downarrow y = 2e^x$ polynomial graph exponential graph
By taking logs of both sides of the above equations we find that the graph of each is a straight line. A polynomial graph is a straight line when I is plotted against log y An exponential graph is a straight line wher plotted against log y So when we have a graph or a table of data, find the gradient and the y-intercept of the straight line. You will be given the relationship in the que Take logs of both sides of the given relations (base 10 or base e according to the question) Equate log a to the y-intercept . Equate n or log b to the gradient Solve these equations to calculate the consta	Proof: $y = ax^n$ $y = ab^x$ $\log y = \log ax^n$ $\log y = \log ab^x$ $\log y = \log a + \log x^n$ $\log y = \log a + \log b^x$ $\log y = \log a + n \log x$ $\log y = \log a + x \log b$ This looks like:This looks like:We $Y = \log a + n X$ $Y = \log a + x \log b$ where n is the gradientwhere log b is the gradientand log a is the y-intercept.and log a is the y-intercept.
Example: The following data was obtained from an experim $\frac{x 1.1 1.2 1.3 1.4 1.5 1.6}{y 2.06 2.11 2.16 2.21 2.26 2.30}$ Logs were tak data as shown $\frac{\log_{10} x 0.04 0.08 0.11 0.15 0.18 0.2}{\log_{10} y 0.31 0.32 0.33 0.34 0.35 0.3}$ a graph was plotted – the line of best fit showing straight line. An equation of the form $y = ax^n$ suggested. Find the values of a and n	Suggested relation is $y = ax^n$ Take \log_{10} of both sides $\log_{10} y = \log_{10} ax^n$ $\Rightarrow \log_{10} y = \log_{10} a + \log_{10} x^n$ $\Rightarrow \log_{10} y = \log_{10} a + n \log_{10} x \dots (1)$ This is a straight line with: y-intercept = $\log_{10} a$ gradient = n From the graph y-intercept = 0.31 and gradient = 0.29 i.e. $\log_{10} a = 0.31$ So $a = 10^{0.31} = 2.0 (1 \text{ d.p.})$ $n = 0.29 = 0.3 (1 \text{ d.p.})$ So relationship is: $y = 2x^{0.3}$ OR pick two points on the line i.e. $(0.04, 0.31)$ and $(0.18, 0.35)$ Substituting into (1) above: $0.31 = 0.04n + \log_{10} a$ $0.35 = 0.18n + \log_{10} a$ Subtracting gives $n = 0.29$, $\log_{10} a = 0.3 \therefore a = 10^{0.3} = 2 (1 \text{ d.p.})$ Again this gives the relationship of: $y = 2x^{0.3}$

Example

Six spherical sponges were dipped in water and weighed to see how much water each could absorb. The diameter (*x* millimetres) and gain in weight (*y* grams) were measured and recorded for each sponge.

It is thought that x and y are connected by a relationship of the form $y = ax^{b}$

By taking logarithms of the values of x and y, this table was constructed.

$X(=\log_e x)$	2.10	2.31	2.40	2.65	2.90	3.10
$Y(=\log_e y)$	7.00	7.60	7.92	8.70	9.38	10.00

A graph was drawn and is shown here.

- a) Find the equation of the line in the form Y = mX + c
- b) Hence find the values of the constants *a* and *b*

in the relationship $y = ax^b$

Solution:

 $y = ax^b$

a)

$$\log_{e} y = \log_{e} ax^{b}$$

$$\log_{e} y = \log_{e} a + \log_{e} x^{b}$$

$$\log_{e} y = \log_{e} a + b \log_{e} x$$

This is of the form Y = mX + c where m = b and $\log_e a = c$

b) Choose two points on the line of best fit. (2.1, 7.0) and (3.1, 10.0)

Substitute into $\log_e y = \log_e a + b \log_e x$

giving: $7.0 = \log_e a + 2.1 b \dots (1)$

 $10.0 = \log_e a + 3.1 b \dots (2)$

subtracting: (2) – (1) \Rightarrow 3.0 = b substituting $\Rightarrow \log_e a = 0.7$ so $a = e^{0.7}$ a = 2.01...

Hence relationship is: $y = 2x^3$ i.e. a = 2.0 and b = 3.0 (1 d.p.)

Note: You should be confident in applying the method in part (b) rather than relying on the gradient and y-intercept, as in this case, you cannot determine the y-intercept.

The Exponential and Logarithmic Functions

Example

Find the relation $y = ab^x$ for this data

х	2.15	2.13	2.00	1.98	1.95	1.93
у	83.33	79.93	64.89	62.24	59.70	57.26

1.94 1.92

1.90 1.88

1.86

1.84 1.82

1.80 1.78 1.76

1.74

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Solution:

 $y = ab^{x}$ $\log_{10} y = \log_{10} ab^{x}$ $\log_{10} y = \log_{10} a + \log_{10} b^{x}$ $\log_{10} y = \log_{10} a + x \log_{10} b$

Add a row to the table showing $\log_{10} y$

Plot data **log**₁₀ **y** against **x** (because relationship is exponential)

to determine **line of best fit** which will indicate which points to use.

x	2.15	2.13	2.00	1.98	1.95	1.93
у	83.33	79.93	64.89	62.24	59.70	57.26
log ₁₀ y	1.92	1.90	1.81	1.79	1.78	1.76

From graph, choose points (1.93, 1.76) and (2.15, 1.92) corresponding to $(x, \log_{10} y)$

Substituting into $\log_{10} y = \log_{10} a + x \log_{10} b$

gives: $1.92 = \log_{10} a + 2.15 \log_{10} b \dots (1)$ and: $1.76 = \log_{10} a + 1.93 \log_{10} b \dots (2)$ Subtracting: $(1) - (2) \quad 0.16 = 2.15 \log_{10} b - 1.93 \log_{10} b$ $0.16 = 0.22 \log_{10} b$ $\log_{10} b = 0.727$ $b = 10^{0.727} = 5.3 (1 \text{ d.p.})$

Substituting into (1) \Rightarrow $\log_{10}a = 1.92 - 2.15 \log_{10} 5.3$ $\log_{10}a = 1.92 - 1.56$ $\log_{10}a = 0.36$ $a = 10^{0.36} = 2.29 = 2.3 (1 \text{ d.p.})$

Hence relationship is: $y = 2.3 (5.3)^x$

Unit 3 - 4	The Wave Function a co	a cos x + b sin x			
When two waves o combined together, wave that is shifted waves.	f the form a cos x + b sin x are the result is a sine or cosine in phase from the original				
The wave function	on	$\uparrow \pi_{\prime}$			
We can express a c single wave.	os $x + b \sin x$ in the form of a	$y = \cos x$			
This can be a sine of cosine wave is simpleft.	or a cosine wave, since a ply a sine shifted 90° to the				
This single wave is	called the wave function.				
$\mathbf{R}\cos\left(\mathbf{x}\pm\mathbf{\alpha}\right)$ and	nd $\mathbf{R}\sin(\mathbf{x} \pm \boldsymbol{\alpha})$	There are four different forms we can use – all of these are equivalent – we choose whatever is convenient. You will always be given the appropriate form in the question.			
Expressing a cos as R cos (x ± α)	s x + b sin x or $R sin (x \pm \alpha)$				
Example:					
Express $3 \cos x + 5$ in the form R cos (isin x x - α)				
Step 1. Expand R cos (x	-α)	$R \cos (x - \alpha) = R \cos x \cos \alpha + R \sin x \sin \alpha$			
Step 2. Compare coefficien	nts of sin x and cos x	R sin α = 5 (1) R cos α = 3(2)			
Step 3. Square and add to a	obtain R	$R^{2} \sin^{2} \alpha + R^{2} \cos^{2} \alpha = 5^{2} + 3^{2}$ $R^{2} (\sin^{2} \alpha + \cos^{2} \alpha) = 5^{2} + 3^{2}$			
		Note: $\sin^2 \alpha + \cos^2 \alpha = 1$ so, $R^2 = 5^2 + 3^2$ $R^2 = 34$ $R = \sqrt{34}$			
Step 4. Divide the sin α eq This gives you tan	uation by the $\cos \alpha$ equation. α .	$\frac{R\sin\alpha}{R\cos\alpha} = \frac{5}{3} \text{note that} \tan\alpha = \frac{\sin\alpha}{\cos\alpha} \text{so} \tan\alpha = \frac{5}{3}$			
Step 5. Identify the quadra equations obtained	nt for α by looking at the two in step 2.	From equation (1) and (2) look at the signs of sin α and cos α ; sin α is +, cos α is + These senditions both equation 1^{S} readenet calls			
Step 6.		These conditions both apply in 1 quadrant only. 1 C			
Calculate α		$\tan \alpha = \frac{5}{3} \Rightarrow \alpha = 59.036 \alpha = 59^{\circ}$			
Step 7. Put it all together		:. $3 \cos x + 5 \sin x = \sqrt{34} \cos (x - 59)^{\circ}$			
		Always use this method of setting out your working.			
		Do NOT try to remember formulae for this. Work it out !			

Unit 3 - 4 The Wave Function a c	cos x + b sin x			
 We have shown that: 3 cos x + 5 sin x = √34 cos (x - 59)° The combined waveform is a cosine wave, of amplitude √34 periodicity - same as original waves (2π) phase shift is 59° to the right. This procedure allows us to: i) investigate maximum and minimum values and where they occur. ii) solve the equation 3 cos x + 5 sin x = constant 	$\sqrt{34} - \frac{5}{5}$ $y = \sqrt{34} \cos (x - 59)^{\circ}$ $y = 3\cos x$ 2π $y = 5\sin x$			
Maximum and minimum values Example: Find the maximum and minimum values of: $3 \cos x + 5 \sin x$ for $0 \le x \le 360^{\circ}$ and state the values of x at which they occur. This result also tells us that there is a maximum turning point at (59°, $\sqrt{34}$) and a minimum turning point at (239°, $-\sqrt{34}$).	Solution: Express the two functions as a single function – in the form of R cos ($x \pm \alpha$) or R sin ($x \pm \alpha$) Since we have already done this above, we shall use the above result: and express 3 cos x + 5 sin x as $\sqrt{34} \cos (x - 59)^{\circ}$ The cosine has a maximum value of 1 and a minimum value of -1 The maximum occurs when cos () = 0° and 360° (0 or 2π radians) The minimum occurs when cos () = 180° (π radians) \therefore max value of $\sqrt{34} \cos (x - 59)^{\circ}$ is $\sqrt{34}$ this occurs when $x - 59 = 0$ and $x - 59 = 360$ i.e. $x = 59^{\circ}$ or $x = 419^{\circ}$ (discard 419° as out of range) \therefore min value of $\sqrt{34} \cos (x - 59)^{\circ}$ is $-\sqrt{34}$ this occurs when $x - 59 = 180$ i.e. $x = 239^{\circ}$ Hence maximum value is $\sqrt{34}$ when $x = 59^{\circ}$ and minimum value is $-\sqrt{34}$ when $x = 239^{\circ}$			
Solving Equations Example: Solve the equation: $3 \cos x + 5 \sin x - 2 = 0$ for $0 \le x \le 360^{\circ}$	Solution: Express 3 cos x + 5 sin x in the form of R cos (x ± α) or R sin (x ± α) Since we have already done this above, we shall use the above result: and express 3 cos x + 5 sin x as $\sqrt{34} \cos (x - 59)^{\circ}$ The equation we have to solve becomes: $\sqrt{34} \cos (x - 59) = 2$ $\therefore \cos (x - 59) = 2/\sqrt{34}$ $\therefore \cos (x - 59) = 0.3430$ $\therefore \operatorname{acute} (x - 59) = 69.9^{\circ}$ cosine is positive, so angle lies in 1 st or 4 th quadrants. so x - 59 = 69.9 or x - 59 = 360 - 69.9 Hence x = 128.9^{\circ} or 349.1^{\circ}			

Unit 3 - 4	3 - 4 The Wave Function a cos x + b sin x						
Examples:							
1. Solve for $0 \le x \le 180$ $6 \cos(3x + 60) - 3 = 0$							
6	$6\cos(3x+60) = 3$						
C	$\cos (3x + 60) = 0.5$ so, acute $(3x + 60) = 60^{\circ}$						
1	The range for x is: $0 \le x \le 180$	so the range for 3x	$1S: 0 \le x \le 540$	accord time around)			
1	3x + 60 = 60 $3x + 60 = 36$	$\frac{1}{2}$ $\frac{1}$, 4 and 5 (1 quadrant	– second time around)			
	$x = 0^{\circ}$ 80° or 120°	30 - 00 3x + 00 = 3	00 + 00				
	x = 0, 80 of 120						
2. i) Express ii) and her	s $\sqrt{3} \cos x - \sin x$ in the form have solve the equation $\sqrt{3} \cos x$	$a \sin(x - \alpha)$ $-\sin x = 0 \text{ for } 0 \le x$	x ≤ 360				
i) k	$\sin (x - \alpha) = k \sin x \cos \alpha - k \cos \alpha$	os x sin α					
С	omparing coefficients:	$-k \sin \alpha = \sqrt{3}$ $k \cos \alpha = -1$	k sin $\alpha = -\sqrt{3}$ k cos $\alpha = -1$	(1) (2)			
S	quaring and adding:	$k^2 = (\sqrt{3})^2 + 1^2$	$k^2 = 3 + 1 = 4$	k = 2			
d	ividing:	$\tan \alpha = \sqrt{3}$	acute $\alpha = 60^{\circ}$				
fı	rom (1) and (2)	$\sin \alpha$ and $\cos \alpha$ both	negative, so α lies in 3 rd	quadrant			
		$\therefore \alpha = 180 + 60^\circ = 24$	40°				
H	Indence: $\sqrt{3} \cos x - \sin x = 2 \sin x$	n (x - 240)					
ii) U	Using $2 \sin (x - 240) = 0$	$\sin(x - 240) = 0$	$(x - 240) = -180^\circ$, (0°, 180°, or 360°			
·	$x = 60^{\circ} \text{ or } x = 240^{\circ}$						
(1 Se	(because we are adding 240°, we need to make sure we cover all the range, so we need to consider the solution -180° as well, we do not need to go any further back, since we would be then out of the range)						
3. Using R cos (2 and the corres	$2x - \alpha$), find the maximum and ponding values for x in $0 \le x \le \alpha$	minimum values of : 2π .	$4\cos 2x + 3\sin 2x + 5$				
R	$a \cos(2x - \alpha) = R \cos 2x \cos \alpha + \alpha$	R sin 2x sin α					
С	ompare coefficients:	$R \sin \alpha = 3$					
		R cos $\alpha = 4$					
S	quaring and adding:	$R^2 = 3^2 + 4^2$	$R^2 = 25$	R = 5			
d	ividing:	$\tan \alpha = \frac{3}{4}$	acute $\alpha = 0.643$ rad				
Si	sin α and cos α both positive, so α is in first quadrant,						
E	Ince: $4 \cos 2x + 3 \sin 2x + 5$	can be expressed as:	$5\cos(2x - 0.643) + 5$				
Ν	Maximum value is:10 when $(2x - 0.643) = 0$, 2π , or 4π (since we have 2x and not x)when $x = 0.32$ rad, 3.46 rad (6.60 rad – discard – out of range)						
Ν	finimum value is:	0 when $(2x - 0.643) = \pi$ or 3π (since we have 2x and not x) when x = 1.89 rad or 5.03 rad .					